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We study shot noise of the spin-polarized current in a diffusive ferromagnetic nanowire which contains a
ballistic domain wall. We find that the existence of a short domain wall influences strongly the shot noise for
sufficiently high spin polarization of the wire. Compared to the situation of the absence of the domain wall, the
shot noise can be reduced or enhanced depending on the length of the domain wall and its relative conductance.
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I. INTRODUCTION

Electronic transport through ferromagnetic domain walls
�DWs�, the regions with rotating magnetization vectors
which connect two homogeneous domains with disoriented
magnetizations, has been recently a subject of extensive in-
vestigations, both theoretically1 and experimentally.2,3 This
growing interest is stimulated by the fundamental new phys-
ics raising from the dynamics of spin of electron in DW,4 as
well as by the potential applications in nanoelectronic and
spintronic devices.5 Among the others, recent experiments on
magnetic nanostructures and nanowires have revealed that
the presence of a DW may result in a magnetoresistance as
large as several hundreds or even thousands of percents.6–8

In the bulk metallic ferromagnets such as Fe, Co, and Ni
the so-called Bloch walls are the favored magnetic configu-
rations where the rotating magnetization vector is in the
plane of DW. Such a DW is rather thick with a length of
about several hundreds of nanometers. However, in ferro-
magnetic nanowires the so-called “Néel walls” are more fa-
vored due to the transverse confinement.9 In a Néel wall the
magnetization vector rotates in the plane perpendicular to the
plane of DW and the thickness of the DW can be on order of
10 nm. In ferromagnetic nanostructures, such as a narrow
constriction between wider domains, even sharper DWs with
lengths of the atomic scale can appear.10–12 In the two latter
cases the length of DW is usually smaller than the electron
mean-free path of scattering from the static disorders, and
thus the electron transport is ballistic. Several theoretical
works have been devoted to studying contribution of the bal-
listic DWs on the resistance of the nanowires and magnetic
nanostructures.13–16 In a very thick DW the spin of the elec-
tron propagating across the wall follows the magnetization
direction quasiadiabatically. Then scattering of the electron
from DW is very small and contribution of the DW in the
resistance is negligible,17–20 while for a narrow DW the dy-
namic of spin of electron through the wall is not adiabatic
and the presence of the DW causes to considerable scattering
of electron. Calculations in the ballistic regime show an in-
crease in the resistance due to the DW.21–24

In spite of several theoretical and experimental studies of
the contribution of a DW on the average current, to our best
knowledge, there have been no works devoted to the fluctua-
tion of spin-polarized current in DWs. Low-temperature tem-
poral fluctuation of the electrical current through a mesos-
copic conducting structure, the so-called shot noise, provides

valuable information about the charge transport process
which is not extractable from the mean conductance.25–29

The aim of the present work is to study the effect of spin-
dependent scattering of electrons in a ferromagnetic DW on
the shot noise.

We consider a ferromagnetic nanowire consisting of a
180° ballistic DW connected to two diffusive domains with
the magnetization vectors aligned antiparallel to each other.
Employing the two-band Stoner Hamiltonian and within the
scattering formalism, we calculate the spin-dependent trans-
mission coefficients of DW. The resulting shot noise shows
strong dependence on the size of the DW as well as on the
degree of the spin polarization of the nanowire. For a thick
DW where the spin dynamics is dominated by the quasiadia-
bat following the local magnetization vector, the shot noise
has its normal value �shot noise of the wire without DW�
determined solely by the conductances of the diffusive do-
mains and the DW itself. However at lower thickness of DW,
the shot noise deviates significantly from the normal value
depending on the spin polarization and the ratio of the con-
ductance of the DW to the domains. The interplay between
diffusive transport at domains and the noncollinear magneti-
zation of the DW causes to reduction in the shot noise below
the normal value with varying the DW thickness.

In Sec. II, we present a circuit which models the diffusive
ferromagnetic nanowire with a ballistic Néel DW. We calcu-
late the spin-polarized scattering coefficients of DW, which
are essential for the calculations of the contribution of DW in
the shot noise. Section III is devoted to developing formulas
for the average current and the shot noise of the nanowire.
We analyze the obtained results in Sec. IV for a full range of
the DW thickness, the spin polarization, and the relative con-
ductance of DW. Finally, in Sec. V we give a conclusion.

II. MODELING AND THE BASIC EQUATIONS

We consider a ferromagnetic nanowire consisting of two
diffusive ferromagnetic domains with antiparallel magnetiza-
tion vectors which are connected through a 180° ballistic
DW with length L. Figure 1 shows a sketch of the nanowire
and the corresponding circuit consisting of the two diffusive
domains and the ballistic DW. In the absence of extrinsic
spin-flip scattering processes �for instance due to magnetic
impurities�, each diffusive domain is represented by two par-
allel spin-dependent conductances. In the circuit model the
DW is represented as a coherent four-terminal scattering re-
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gion which is connected through ideal ferromagnetic leads to
conducting elements of the two domains �see Fig. 1�b��. We
use the scattering approach and follow Refs. 18, 20, and 23
to calculate the scattering coefficients of the electron through
the DW. Within the two-band Stoner model, where the
d-band electrons are responsible for the magnetization and
the current is carried by the s-band electrons, we may de-
scribe transport of the electrons through DW by an effective
Hamiltonian of the form

Ĥ = −
�2

2m
�2 +

h0

2
m̂�r� · �̂ , �2.1�

where h0 is the spin splitting of the s electrons due to the
exchange coupling with the d electrons and �̂ is the vector of
the Pauli matrices. The first term of the Hamiltonian is the
kinetic energy of electron and the second part represents the
interaction of the spin of electron with the local magnetiza-
tion oriented in the direction of the unit vector m̂�r�. In this
work we consider a Néel wall, which is a more common
configuration in laterally confined ferromagnetic nanowires.
We assume that m̂�r�= (mx�z� ,0 ,mz�z�) varies along the z
direction �wire axis�. In the left and right domains the mag-
netization vectors are aligned along the −z and z axes, re-
spectively. The assumption m̂�r�= m̂�z� allows us to separate
the transverse and longitudinal parts of the Hamiltonian
�2.1�. In the transverse direction the motion of the electron is
quantized with an energy denoted by E�. From Eq. �2.1� the
effective Schrödinger equation for the longitudinal motion of
electron is obtained as

�−
�2

2m

d2

dz2 +
h0

2
m̂�z� · �̂���z� = ���z� , �2.2�

where �=E−E� is the longitudinal energy. To be specific we
consider a trigonometric magnetization profile in the DW,
which is defined by23

m̂�z� = ��cos
�z

L
,0,sin

�z

L
� , for �z� � L/2,

„0,0,sgn�z�… , for �z� � L/2.
	 �2.3�

The advantage of this choice is that it admits an exact solu-
tion for the wave functions inside the DW.

In order to obtain the spin-dependent transmission and
reflection coefficients we have to solve the Schrödinger
equation �2.2� in different regions and then match the solu-
tions of different regions at the boundaries �z= �L /2�. In the
domains z	−L /2 and z�L /2 the eigenfunctions have the
form 
=eik�z�ẑ ,�
, where �= �1 denote up and down spin
directions and �ẑ ,�
 are the spin states when spin quantiza-
tion axis is chosen to be the z axis. The longitudinal wave

vector for spin-� electrons is given by k�=�2m
�2 ��+�

h0

2 �. To
find the eigenfunctions in the DW we do a transformation in
spin space from the fixed reference frame to the rotated
frame, which is in the direction of the local magnetization
vector m̂�z�. In our representation it is given by a rotation

about the y axis, R̂=exp�−i�y� /2�, where �=tan−1�mx /mz�
= �

2 − �z
L is the angle of the magnetization vector respect to

the z axis at the point z. The Hamiltonian in the rotating

frame Ĥr= R̂−1ĤzR̂, where Ĥz is the longitudinal part of the
Hamiltonian at fixed frame, takes the form

Ĥr = −
�2

2m
� d2

dz2 − 2� + i�y
�2

m

d

dz
+

h0

2
�z, �2.4�

which does not depend on z explicitly. Here = 1
2

d
dz�=− �

2L .
The eigenfunctions of this Hamiltonian have the forms

���z� = �ũ�

ṽ�

�eiq�z, �2.5�

where

ũ�
2 =

1

2�1 −
mh0/�2

22 + ��8m�2

�2 + �mh0

�2 �2 ,

ṽ�
2 =

1

2�1 +
mh0/�2

22 + ��8m�2

�2 + �mh0

�2 �2 , �2.6�

and the longitudinal wave vectors are

q� = ��2m�

�2 + 2� + ��8m�2

�2 + �mh0

�2 �2�1/2

.

�2.7�

The wave functions in the fixed reference frame �along the z

axis� are obtained from the relations 
��z�= R̂���z�. Now, if
we consider a spin-up electron incident to the DW from the
left domain, the wave functions in three regions have the
following forms:


1 = eik+z�1

0
� + r↑↑e

−ik+z�1

0
� + r↓↑e

−ik−z�0

1
� �2.8�

for z	−L /2,

x

y

z

domain wall
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2
1− L
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FIG. 1. �Color online� �a� Schematic of a nanowire containing a
domain wall and �b� the corresponding circuit model of the
nanowire.
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2 = c1eiq+z�u+

v+
� + c2e−iq+z�u+

v+
� + c3eiq−z�u−

v−
�

+ c4e−iq−z�u−

v−
� �2.9�

for −L /2�z�L /2, and


3 = t↑↑e
ik−z�1

0
� + t↓↑e

ik+z�0

1
� �2.10�

for z�L /2. Here t↑↑ �r↑↑� and t↓↑ �r↓↑� are the spin-conserved
and spin-flip transmission �reflection� coefficients, respec-
tively. Imposing the condition of the continuity of the wave
functions and their first derivatives at the boundaries
�z= �L /2�, we obtain these scattering coefficients. The ob-
tained expressions are too lengthy to be given here. We only
mention some properties of the reflection and transmission
probabilities. Both spin-conserved �r↑↑�2 and spin-flip �r↓↑�2
reflection probabilities are small except for a narrow DW of
the length L��DW, where �DW= 2

kF
�

2EF

h0
�1/2 is the spin-

polarization-dependent length scale. The spin-conserved
transmission probability �t↑↑�2, is close to unity for a narrow
DW and has a diminishing behavior with increasing L /�DW
toward a vanishing value for a thick DW. In contrast the
spin-flip transmission probability �t↓↑�2 has an appreciable
value for a sizable DW of L��DW, where the spin of elec-
tron has enough time to follow adiabatically the local mag-
netization direction. In the limit of L��DW the electron
transport is mainly realized through two independent chan-
nels connecting the majority and minority spin electrons in
two domains.

III. AVERAGE CURRENT AND SHOT NOISE

To express the average current and shot noise of the nano-
wire in terms of the scattering coefficients derived in Sec. II,
we use the circuit model of nanowire shown in Fig. 1�b�. In
the circuit the diffusive domains are modeled by two parallel
conductances for up- and down-spin electrons, denoted by
g�

�, where �=1,2 labels the left and right domains, respec-
tively. These conductances have connected to the left and
right reservoirs with fixed voltages V1 and V2. The DW has
been shown as a four-terminal device connected via the
nodes �� ,�� to the same domains through the ideal ferro-
magnetic leads. For simplicity we consider a symmetric
structure for that, g1

↑�↓�=g2
↓�↑�=g+�−�. Noting the fact that the

difference of the Fermi-level density of states for the
majority- and minority-spin electrons in the domains is pro-
portional to the ratio h0 /2EF, the spin-dependent conduc-
tances are approximated by

g� =
gF

2
�1 �

h0

2EF
� , �3.1�

where gF=g++g− is the total conductance of each diffusive
ferromagnetic domain. The conductance of the ballistic leads
is given by g0=Ne2 /h, where the total number of open chan-
nels in the leads N=N++N− is the sum of the number of open
channels for two spin states electrons N�. The value of g0 /gF

is normally large in ferromagnetic domain structures.
We derive the average current and the shot-noise power

from the spin-dependent Landauer-Buttiker formula30 and
the scattering coefficients obtained in the Sec. II. The current
operator for spin-� electrons flowing through terminal � is
defined as

î�
��t� =

e

h
�
n=1

N� � � d�d�� ei��−���t/�

��â�n
�†���â�n

� ���� − b̂�n
�†���b̂�n

� ����� , �3.2�

where the operator â�n
�†

��� (â�n
� ���) creates �annihilates� out-

going electron from terminal � in the nth channel with en-

ergy �. Similarly, b̂�n
�†

�b̂�n
� � denotes creation �annihilation�

operator for a spin-� incoming electron in the terminal �.
The corresponding average current reads

i�
� = �

�,�
G��

��V�
� , �3.3�

where � ,� stand for domains and � ,� for spin directions; V�
�

are spin-� voltages at the connecting nodes between the do-
main � and the DW and G��

�� are elements of the conductance
matrix defined by

G��
�� =

e2

h
Tr������� − �s��

���†s��
��� , �3.4�

where s��
�� are elements of the scattering matrix of the DW at

the Fermi energy. Considering that the number of channels is
very large and using the fact that the density of states for a
two-dimensional �2D� system is constant we can change Tr
to integral over � in calculating the traces. Then we can write

Tr�S��
��†

S��
��� =

N

2EF
�

−h0/2

EF

d��S��
��†

���S��
������ . �3.5�

The corresponding expression for the zero-frequency corre-

lation of current fluctuations S���
���=2�dt��i�

��t��i��
���0�
 is ex-

pressed as

S���
��� =

2e2

h
�
�,��

�
�,��

Tr��s��
���†s���

����s����
�����†s���

������V�
� − V��

��� .

�3.6�

On the other hand the average current for spin-� electrons
through the domain � can be obtained via the relation

I�
� = g�

��V� − V�
�� . �3.7�

Applying the conservation rule for spin-� current flowing
into the nodes �� ,�� and using Eqs. �3.3� and �3.7� we find

g�
�V�

� + �
�,�

G��
��V�

� = g�
�V�. �3.8�

The solution of this matrix equation gives us V�
� in terms of

the voltage difference �V1−V2� and the conductances g�
� and

G��
�� , from which and using Eqs. �3.3� and �3.6� we can cal-

culate the spin-resolved average currents and the contribu-
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tion of DW to the correlations of current fluctuations in dif-
ferent nodes.

To calculate the noise power of the total charge current in
� reservoir, I�= I�

↑ + I�
↓ , we should include the effect of the

voltage fluctuations in the nodes as well as the fluctuations
due to the scattering inside the domains. Using Eq. �3.7� and
denoting the intrinsic fluctuations of the current due to the
scattering inside the domain by �I�

�, we can write the total
fluctuations of the spin-� current coming from � domain to
the �� ,�� node as

�I�
� = − g�

��V�
� + �I�

�, �3.9�

where �V�
� is the voltage fluctuation in the node �� ,��. We

notice that the voltages of reservoirs V� are constant. At the
same time from Eq. �3.3� we obtain the total fluctuation of
the current flowing through the node �� ,�� in terms of the
current fluctuation due to scattering from DW as follows:

�i�
� = �

�,�
G��

���V�
� + �i�

�, �3.10�

where �i�
� is the intrinsic current fluctuation of DW. Apply-

ing the conservation rule for the temporal fluctuations of the
currents �I�

�=�i�
�, we obtain

g�
��V�

� + �
�,�

G��
���V�

� = �I�
� − �i�

�. �3.11�

By solving the above matrix equation we find �V�
� in terms

of the �I�
� and �i�

�. The shot noise of the total current in �
reservoir is given by

S�� = S��
↑↑ + S��

↑↓ + S��
↓↑ + S��

↓↓ , �3.12�

where S��
���=2�dt��I�

��t��I�
���0�
, and is expressed in terms

of the correlations of the current fluctuations �I�
� and �i�

�.
The correlations of the currents fluctuations �i�

� are given by
Eq. �3.6�, and for the diffusive domains we have the follow-
ing result for the correlations of the currents �I�

�:

2� dt��I�
��t��I��

���0�
 =
1

3
g�

��V� − V�
����������. �3.13�

Using Eqs. �3.6�, �3.7�, �3.12�, and �3.13� we can calculate
the average current and the shot noise of the nanowire in
terms of the system parameters. In Sec. IV we discuss the
results for average current and Fano factor defined by
F=S�� /2eI�.

IV. RESULTS AND DISCUSSIONS

The average current and Fano factor of the nanowire can
be expressed in terms of the three dimensionless parameters
kFL, 2EF /h0, and g0 /gF which, respectively, characterize the
thickness of the DW, the degree of spin polarization of the
nanowire, and the relative conductance of the ballistic DW
and the two domains. Let us start with analyzing the effect of
DW in the conductance of the nanowire. In Fig. 2�a�, we
have plotted the conductance of the nanowire G normalized
to its conductance in the absence of DW, G0, versus kFL for
g0 /gF=80 and different values of 2EF /h0. Conductance of

the nanowire rises with increasing the thickness of the DW,
which means that the presence of the DW always increases
the resistance of the nanowire. Considerable change in the
conductance occurs for a short DW. The corresponding
variation of the Fano factor is shown in Fig. 2�b�. For the
half-metal nanowire �2EF /h0=1� the Fano factor approaches
its maximum Poissonian value �F=1� at small lengths but
decreases rapidly by increasing kFL. In a fully polarized
nanowire at small lengths the DW acts as a tunnel barrier and
causes to Poissonian shot noise. A similar effect is seen in the
ferromagnetic-normal-metal-ferromagnet �FNF� spin valve
structures.27 The Fano factor passes through a smooth mini-
mum before taking its normal value in the limit of kFL�1.
For smaller spin polarizations �greater values of the 2EF /h0�
the Fano factor shows a maximum smaller than 1 which
occurs at a finite kFL. The smooth minima at a finite length
of DW occurs for smaller spin polarizations as for the case of
2EF /h0=1, as is shown in the inset of Fig. 2�b�. This obser-
vation that the Fano factor decreases below its normal value
for specific lengths of DW can be attributed to the noncol-
linear change in the magnetization at DW. Increasing kFL
causes a decrease in the spin-conserving transmission coef-
ficient and an increase in the spin-flip transmission coeffi-
cient. This tends to decrease the Fano factor. At the same
time by increasing the length of the DW, its conductance
increases and consequently the contribution of the domains
in the Fano factor increases. Competition of these two effects
leads to generation of the minimum in the Fano factor, such
that F goes below the normal value. In this regime while the
transport of electron through DW is closely ballistic, giving
rise to a negligibly small shot noise, its conductance has a
sizable value to have a significant contribution to the Fano
factor of the whole structure. A similar behavior has been
seen in the noncollinear FNF systems with diffusive
junctions,31,32 where the Fano factor reduces below its col-
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FIG. 2. �Color online� �a� Conductance of the ferromagnetic
nanowire with a domain wall relative to its conductance without
domain wall and �b� the Fano factor of the nanowire, in terms of the
domain wall length for different values of 2EF /h0 and g0 /gF=80.
Inset in �b� shows the minimum of the Fano factor.

ABDOLLAHIPOUR, ZAREYAN, AND ASAADI PHYSICAL REVIEW B 79, 104403 �2009�

104403-4



linear value at specific values of the relative angle of the
magnetization vectors. In the limit of large kFL the Fano
factor tends to its normal value �single domain ferromagnetic
nanowire� given by

F =

�
�

F�I�

�
�

I�
,

F� =
�F1

�R1
�2 + FDW

� RDW
�2 + F2

�R2
�2�

�R1
� + RDW

� + R2
��2 , �4.1�

where � denotes majority- and minority-spin subbands,
F1,2

� =1 /3 and R1,2
� =1 /g� are Fano factors and resistances of

the domains, and FDW
� =0 and RDW

� =1 /g0 are those of very
thick DW. This expression coincides with the results which
is obtained by extending the formula derived by Beenakker
and Buttiker33 for Fano factor of a wire consisting of a series
of phase coherent segments in the inelastic regime. At this
limit electrons pass adiabatically trough the DW and mixing
between majority- and minority-spin subbands is negligible.
Thus system behaves like a single domain and DW has no
considerable effect on the conduction.

Let us now consider the effect of varying the relative
conductances of domains g0 /gF on the Fano factor. This is
shown in Fig. 3 for different 2EF /h0. The main feature is that
by decreasing g0 /gF the length scale over which F has ap-
preciable variation increases. There are two contributions in
the total shot noise of the nanowire. One is the contribution
of the two domains which is independent of the DW length
and the other one is due to the DW and depends on the
length of the DW. The relative importance of them is deter-
mined by voltage drops at these elements. For large g0 /gF
domains act as resistive elements of the nanowire and cause
to lowering the voltage drop at DW and thus reducing the
importance of the DW contribution. As it is seen in Fig. 3 at
this limit the Fano factor shows small variations with length.
On the opposite limit when g0 /gF is small the DW has domi-
nant contribution at the shot noise and the Fano factor shows
considerable variations with length of DW.

V. CONCLUSION

In conclusion, we have investigated the effect of a ballis-
tic domain wall on the spin-polarized shot noise of a ferro-

magnetic nanowire. We have considered the inelastic regime
where the diffusive domains and the ballistic DW can be
treated as the separated coherent segments. Using the two-
band Stoner model for a Néel-type trigonometric profile of
the magnetization vector, we have obtained that Fano factor
changes significantly with respect to its value in the absence
of DW for a high spin polarization of the wire and when DW
is short enough. A remarkable result is that the presence of
DW can cause both reduction and enhancement of the shot
noise, depending on its length, the spin polarization, and the
relative conductances of the domains and DW. Here we con-
sidered a special type of the profile for the DW. The realistic
profile of a DW can be different. Since different profiles for
the DW do not change the scattering coefficients
qualitatively,23 we expect that the simplified profile we con-
sidered here will capture the essential physics and the effect
of considering other profiles to our results for shot noise will
be minor and quantitative.

With the new developed techniques for measurement of
the shot noise in various systems especially the magnetic
tunnel junctions34 and recent progresses in fabricating and
controlling different types of DWs,3 the shot-noise measure-
ment in DW seems to be feasible. Such future measurements
can verify our results experimentally.
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